Main page | Study Branches | Groups of Courses | All Courses | Roles | Explanatory Notes               Instructions
A | C | E | H | I | L | M | N | P | S
A course is the basic teaching unit, it's design as a medium for a student to acquire comprehensive knowledge and skills indispensable in the given field. A course guarantor is responsible for the factual content of the course.
For each course, there is a department responsible for the course organisation. A person responsible for timetabling for a given department sets a time schedule of teaching and for each class, s/he assigns an instructor and/or an examiner.
Expected time consumption of the course is expressed by a course attribute extent of teaching. For example, extent = 2 +2 indicates two teaching hours of lectures and two teaching hours of seminar (lab) per week.
At the end of each semester, the course instructor has to evaluate the extent to which a student has acquired the expected knowledge and skills. The type of this evaluation is indicated by the attribute completion. So, a course can be completed by just an assessment ('pouze zápočet'), by a graded assessment ('klasifikovaný zápočet'), or by just an examination ('pouze zkouška') or by an assessment and examination ('zápočet a zkouška') .
The difficulty of a given course is evaluated by the amount of ECTS credits.
The course is in session (cf. teaching is going on) during a semester. Each course is offered either in the winter ('zimní') or summer ('letní') semester of an academic year. Exceptionally, a course might be offered in both semesters.
The list presented here is sorted by departments, within departments alphabetically by the Course title. The departments are listed alphabetically by the Department code.

Courses


18105 Department of Applied Mathematics
Course code Course title Extent of teaching
Completion
Semester
Credits
Guarantor Instructors
BI-ALO Algebra and Logic 2+1 Z,ZK L 4 Starý J. Starý J.
MI-VYC Computability 2+2 Z,ZK L 4 Starý J. Starý J.
BIE-ZMA Elements of Calculus 3+2 Z,ZK Z 6 Kalvoda T. Marchesiello A.
BIK-ZMA Elements of Calculus 20+4 Z,ZK Z 6 Kalvoda T. Petr I.
BI-ZMA Elements of Calculus 3+2 Z,ZK Z 6 Kalvoda T. Kalvoda T., Petr I., Vašata D.
BIE-ZDM Elements of Discrete Mathematics 2+2 Z,ZK Z 5 Kolář J. Kolář J.
BIK-ZDM Elements of Discrete Mathematics 13+4 Z,ZK Z 5 Kolář J. Petr I.
BI-ZDM Elements of Discrete Mathematics 2+2 Z,ZK Z 5 Kolář J. Dombek D., Kolář J.
BI-HMI History of Mathematics and Informatics 2+1 Z,ZK L 3 Šolcová A. Šolcová A.
BIK-HMI History of Mathematics and Informatics 13+2 ZK L 3 Šolcová A. Šolcová A.
MIE-HMI History of Mathematics and Informatics 2+1 Z,ZK Z 3 Šolcová A. Šolcová A.
MI-HMI2 History of Mathematics and Informatics 2+1 ZK Z 3 Šolcová A. Šolcová A.
BI-UVM Introduction to higher mathematics 3+2 Z Z 6
BIE-IMA2 Introduction to Mathematics 2 0+1 Z Z 2
BIE-IMA Introduction to Mathematics 0+3 Z Z 4 Marchesiello A. Marchesiello A.
BIK-PKM Introduction to Mathematics Z Z 4
BI-PKM Introduction to mathematics Z Z 4 Klouda K.
BIE-LIN Linear Algebra 4+2 Z,ZK L 7 Klouda K. Hrabák P.
BIK-LIN Linear Algebra 26+4 Z,ZK L 7 Klouda K. Zhouf J.
BI-LIN Linear Algebra 4+2 Z,ZK L 7 Klouda K. Dombek D., Kleprlík L.
BIE-MLO Mathematical Logic 2+2 Z,ZK Z 5 Trlifajová K. Trlifajová K.
BIK-MLO Mathematical Logic 13+4 Z,ZK Z 5 Klouda K. Klouda K.
BI-MLO Mathematical Logic 2+1 Z,ZK Z 5 Trlifajová K. Klouda K., Starý J., Trlifajová K.
MI-MSI Mathematical Structures in Computer Science 2+1 Z,ZK L 4 Starý J. Starý J.
MIE-MKY.16 Mathematics for Cryptology 2+1 Z,ZK L 5 Demlová M. Petr I.
MIE-MKY Mathematics for Cryptology 2+1 Z,ZK L 4
MI-MKY.16 Mathematics for Cryptology 2+1 Z,ZK L 5 Demlová M. Petr I., Starosta Š.
MI-MKY Mathematics for Cryptology 2+1 Z,ZK L 4
MIE-MZI Mathematics for data science 2+1 Z,ZK L 4 Starosta Š. Starosta Š.
MI-MZI Mathematics for data science 2+1 Z,ZK L 4 Klouda K. Klouda K., Starosta Š., Vašata D.
MIE-MPI Mathematics for Informatics 3+2 Z,ZK Z 7 Holeňa M. Starosta Š.
MI-MPI Mathematics for Informatics 3+2 Z,ZK Z 7 Holeňa M. Holeňa M., Kalvoda T.
MI-NNS Numeration systems in SageMath 1+1 Z Z 2
BIE-PST Probability and Statistics 2+2 Z,ZK Z 5 Novák P. Novák P.
BIK-PST Probability and Statistics 13+4 Z,ZK Z 5 Novák P. Vašata D.
BI-PST Probability and Statistics 2+2 Z,ZK Z 5 Novák P. Novák P.
BI-VMM Selected Mathematical Methods 2+2 Z,ZK L 4 Kalvoda T. Kalvoda T.
MIE-SPI.1 Statistics for Informatics 4+2 Z,ZK L 8
MIE-SPI Statistics for Informatics 4+2 Z,ZK L 7
MIE-SPI.16 Statistics for Informatics 4+2 Z,ZK L 7 Blažek R., Novák P. Blažek R.
MI-SPI.1 Statistics for Informatics 4+2 Z,ZK L 8
MI-SPI Statistics for Informatics 4+2 Z,ZK L 7
MI-SPI.16 Statistics for Informatics 4+2 Z,ZK L 7 Blažek R., Vašata D. Blažek R., Vašata D.


Page updated 20. 9. 2017, semester: L/2015-6, Z,L/2016-7, Z/2017-8, Send comments to the content presented here to Administrator of study plans Design and implementation: J. Novák, I. Halaška