Main page | Study Branches | Groups of Courses | All Courses | Roles | Explanatory Notes               Instructions
A | C | D | E | F | G | L | N | O | P | R | T
A course is the basic teaching unit, it's design as a medium for a student to acquire comprehensive knowledge and skills indispensable in the given field. A course guarantor is responsible for the factual content of the course.
For each course, there is a department responsible for the course organisation. A person responsible for timetabling for a given department sets a time schedule of teaching and for each class, s/he assigns an instructor and/or an examiner.
Expected time consumption of the course is expressed by a course attribute extent of teaching. For example, extent = 2 +2 indicates two teaching hours of lectures and two teaching hours of seminar (lab) per week.
At the end of each semester, the course instructor has to evaluate the extent to which a student has acquired the expected knowledge and skills. The type of this evaluation is indicated by the attribute completion. So, a course can be completed by just an assessment ('pouze zápočet'), by a graded assessment ('klasifikovaný zápočet'), or by just an examination ('pouze zkouška') or by an assessment and examination ('zápočet a zkouška') .
The difficulty of a given course is evaluated by the amount of ECTS credits.
The course is in session (cf. teaching is going on) during a semester. Each course is offered either in the winter ('zimní') or summer ('letní') semester of an academic year. Exceptionally, a course might be offered in both semesters.
The list presented here is sorted by departments, within departments alphabetically by the Course title. The departments are listed alphabetically by the Department code.

Courses


18101 Dept of Computer Science
Course code Course title Extent of teaching
Completion
Semester
Credits
Guarantor Instructors
MI-PAL Advanced Algorithms 2P+1C Z,ZK L 4
BI-AG1 Algorithms and Graphs 1 2P+2C Z,ZK Z 6 Tvrdík P. Tvrdík P., Valla T.
BIE-AG1 Algorithms and Graphs 1 2P+2C Z,ZK Z 6 Tvrdík P. Scholtzová J., Tvrdík P.
BIK-AG1 Algorithms and Graphs 1 14KP+4KC Z,ZK Z 6 Tvrdík P. Chludil J., Tvrdík P.
BI-AG2 Algorithms and Graphs 2 2P+2C Z,ZK L 5
BIE-AG2 Algorithms and Graphs 2 2P+2C Z,ZK L 5
BI-AAG Automata and Grammars 2P+2C Z,ZK Z 6 Holub J. Holub J., Janoušek J.
BIE-AAG Automata and Grammars 2P+2C Z,ZK Z 6 Holub J. Holub J., Trávníček J.
BIK-AAG Automata and Grammars 13KP+4KC Z,ZK Z 6 Janoušek J. Guth O.
MI-AVY Automata in Text Pattern Matching 2P+1C Z,ZK L 4
MI-GEN Code Generators 2P+1C Z,ZK L 4
MI-ATH Combinatorial Theories of Games 2P+2C Z,ZK L 4 Valla T. Valla T.
MI-LCF Compiler system LLVM Z,ZK Z 4
MIE-LCF Compiling system LLVM Z,ZK Z 4
MI-CPX Complexity Theory 3P+1C Z,ZK Z 5 Kučera L. Kučera L., Suchý O.
MI-KOD Data Compression 2P+1C Z,ZK L 4
MI-KOD.16 Data Compression 2P+1C Z,ZK L 5
BI-EP1 Effective programming 1 2P+2C Z Z 4 Kačer M. Kačer M.
BIE-EFA Efficient Algorithms 2P+2C Z,ZK Z 5
BI-EFA Efficient Algorithms 2P+2C Z,ZK Z 5
BIK-EFA Efficient Algorithms 13KP+4KC Z,ZK Z 5
BI-EIA Efficient implementation of algorithms 2P+1C Z,ZK Z 5 Šimeček I. Šimeček I.
BIK-EIA Efficient Implementation of Algorithms 13KP+4KC Z,ZK Z 5
MI-PAM Efficient Preprocessing and Parameterized Algorithms 2P+1C Z,ZK L 4
BI-EP2 Efficient Programming 2 2P+2C KZ L 4
MI-EVY Efficient Text Pattern Matching 2P+1C Z,ZK Z 4
MI-EVY.16 Efficient Text Pattern Matching 2P+1C Z,ZK Z 5 Holub J. Holub J., Polách R.
BIK-TED Electronic Documentation Design 13KP+4KC KZ L 5
BI-TED Electronic Documentation Design 2P+1C KZ L 5
MI-FLP Functional and Logical Programming 2P+1C Z,ZK L 4
BIE-GRA Graph Algorithms and Complexity Theory 2P+2C Z,ZK L 5
BI-GRA Graph Algorithms 2P+2C Z,ZK L 5
BIK-GRA Graph Algorithms 13KP+4KC Z,ZK L 5
MI-GAK Graph theory and combinatorics 2P+2C Z,ZK L 5
MI-LOM Linear Optimization and Methods 2P+1C Z,ZK Z 4
MI-LOM.16 Linear Optimization and Methods 2P+1C Z,ZK Z 5 Černý M. Černý M., Rada M.
MI-NON Nonlinear Continuous Optimization and Numerical Methods 2P+1C Z,ZK Z 4
MI-NON.16 Nonlinear Continuous Optimization and Numerical Methods 2P+1C Z,ZK Z 5 Kruis J. Kruis J.
BIE-OOP Object-Oriented Programming 2P+2C Z,ZK Z 4 Pergl R. Ducasse S., Křikava F., Máj P., Pergl R.
BIK-OOP Object-Oriented Programming 14KP+4KC Z,ZK Z 4 Pergl R. Křikava F., Pergl R.
BI-OOP Object-Oriented Programming 2P+2C Z,ZK Z 4 Pergl R. Ducasse S., Křikava F., Máj P., Pergl R.
MI-SYP Parsing and Compilers 2P+1C Z,ZK Z 4
MI-SYP.16 Parsing and Compilers 2P+1C Z,ZK Z 5 Janoušek J., Melichar B. Janoušek J., Melichar B.
MIE-ROZ.16 Pattern Recognition 2P+1C Z,ZK Z 5
MI-ROZ Pattern Recognition 2P+1C Z,ZK Z 4
MI-ROZ.16 Pattern Recognition 2P+1C Z,ZK Z 5 Haindl M. Haindl M.
BIE-PA1 Programming and Algorithmics 1 2P+2R+2C Z,ZK Z 6 Vagner L. Trávníček J., Vagner L.
BIK-PA1 Programming and Algorithmics 1 20KP+6KC Z,ZK Z 6 Vagner L. Vogel J.
BI-PA1 Programming and Algorithmics 1 2P+2R+2C Z,ZK Z 6 Vagner L. Balík M., Vogel J.
BIE-PA2 Programming and Algorithmics 2 2P+1R+1C Z,ZK L 7
BIK-PA2 Programming and Algorithmics 2 13KP+4KC Z,ZK L 7
BI-PA2 Programming and Algorithmics 2 2P+1R+2C Z,ZK L 7
BI-PMA Programming in Mathematica 2P+2C Z,ZK Z 4 Buk Z. Buk Z.
BIE-PJP Programming Languages and Compilers 2P+1C Z,ZK L 5
BIK-PJP Programming Languages and Compilers 13KP+2KC Z,ZK L 5
BI-PJP Programming Languages and Compilers 2P+1C Z,ZK L 5
BIE-PPA Programming Paradigms 2P+2C Z,ZK Z 5 Janoušek J., Máj P. Janoušek J., Máj P.
BIK-PPA Programming Paradigms 14KP+4KC Z,ZK Z 5 Janoušek J. Janoušek J.
BI-PPA Programming Paradigms 2P+2C Z,ZK Z 5 Janoušek J. Janoušek J.
BI-ACM Programming Practices 1 4C KZ L 5
BI-ACM2 Programming Practices 2 4C KZ Z 5 Suchý O., Valla T. Suchý O., Valla T.
BI-ACM3 Programming Practices 3 4C KZ L 5
BI-ACM4 Programming Practices 4 4C KZ Z 5 Suchý O., Valla T. Suchý O., Valla T.
MI-RUN Runtime Systems 2P+1C Z,ZK Z 4
MI-RUN.16 Runtime Systems 2P+1C Z,ZK L 5 Podlešák J. Máj P., Podlešák J.
BI-TEX TeX and Typography 2P+1C Z,ZK L 4
BI-TS1 Theoretical Seminar I 2C Z Z 4 Suchý O., Valla T. Suchý O., Valla T.
BI-TS2 Theoretical Seminar II 2C Z L 4
BI-TS3 Theoretical Seminar III 2C Z Z 4 Suchý O., Valla T.
BI-TS4 Theoretical Seminar IV 2C Z L 4
MI-TS3 Theoretical Seminar Master III 2C Z Z 4 Suchý O., Valla T.
MI-TS2 Theoretical Seminar Master II 2C Z L 4
MI-TS1 Theoretical Seminar Master I 2C Z Z 4 Suchý O., Valla T. Suchý O., Valla T.
MI-TS4 Theoretical Seminar Master IV 2C Z L 4


Page updated 18. 10. 2019, semester: Z,L/2018-9, Z,L/2019-20, Send comments to the content presented here to Administrator of study plans Design and implementation: J. Novák, I. Halaška