Main page | Study Branches/Specializations | Groups of Courses | All Courses | Roles                Instructions

A course is the basic teaching unit, it's design as a medium for a student to acquire comprehensive knowledge and skills indispensable in the given field. A course guarantor is responsible for the factual content of the course.
For each course, there is a department responsible for the course organisation. A person responsible for timetabling for a given department sets a time schedule of teaching and for each class, s/he assigns an instructor and/or an examiner.
Expected time consumption of the course is expressed by a course attribute extent of teaching. For example, extent = 2 +2 indicates two teaching hours of lectures and two teaching hours of seminar (lab) per week.
At the end of each semester, the course instructor has to evaluate the extent to which a student has acquired the expected knowledge and skills. The type of this evaluation is indicated by the attribute completion. So, a course can be completed by just an assessment ('pouze zápočet'), by a graded assessment ('klasifikovaný zápočet'), or by just an examination ('pouze zkouška') or by an assessment and examination ('zápočet a zkouška') .
The difficulty of a given course is evaluated by the amount of ECTS credits.
The course is in session (cf. teaching is going on) during a semester. Each course is offered either in the winter ('zimní') or summer ('letní') semester of an academic year. Exceptionally, a course might be offered in both semesters.
The subject matter of a course is described in various texts.

BI-TZP.21 Technological Fundamentals of Computers Extent of teaching: 2P+2C
Instructor: Řezníček J., Novotný M. Completion: Z,ZK
Department: 18103 Credits: 5 Semester: Z

Annotation:
Students get acquainted with the fundamentals of digital and analog circuits, as well as basic methods of analyzing them. Students learn how computer structures look like at the lowest level. They are introduced to the function of a transistor. They will understand why processors generate heat, why cooling is necessary, and how to reduce the consumption; what the limits to the maximum operating frequency are and how to raise them; why a computer bus needs to be terminated, what happens if it is not; how a computer power supply looks like (in principle). In the labs, students model the behavior of basic electrical circuits in SW Mathematica.

Lecture syllabus:
1. Basic electrical quantities (voltage, current).
2. Basic components of electronic circuits (resistor, capacitor, coil).
3. Basic semiconductor components (diode, transistor).
4. Boolean logic, basic Boolean functions, logic levels 0 and 1 in digital systems.
5. Basic logic components (gates, flip-flops, multiplexers, drivers).
6. Structure of logic gates in CMOS technology.
7. Energy and performance in digital systems.
8. Principles of data transmission, buses, parallel, serial, asynchronous and synchronous transmissions.
9. Volatile and non-volatile memories, principles and properties.
10. Hardware programming, configurable FPGA circuits, ASIC and SoC integrated circuits.
11. Fourier series, signal spectrum, sinusoidal steady state, impedance.
12. Signal transmission. Signal delays in digital systems. Symmetric lines, asymmetric lines.
13. Measurements in digital systems (oscilloscope, logic analyzer, spectrum analyzer).

Seminar syllabus:
1. Introduction to Mathematica SW.
2. Introduction to Mathematica SW.
3. Circuits with resistors, capacitors and coils (solved in Mathematica).
4. Node voltage method, examples of usage (solved in Mathematica).
5. Parallel and serial combination of elements of the same type. DC circuits (solved in Mathematica).
6. Circuits with transistors, simple amplifiers (solved in Mathematica).
7. Implementation of logic functions with logic gates.
8. Inner structure of CMOS logic gates.
9. Energy and power in digital circuits (solved in Mathematica).
10. Sinusoidal steady state (solved in Mathematica).
11. Impedance, transfer function (solved in Mathematica).
12. Fourier series, signal spectrum (solved in Mathematica).
13. Assesments.

Literature:
1. Dean B., Llamocca D. : Introduction to Analog and Digital Circuits. Kendall Hunt Pub, 2019. ISBN 978-1792408809.
2. Wakerly J.F. : Digital Design: Principles and Practices (5th Edition). Pearson, 2018. ISBN 978-0134460093.
3. Agarwal A., Lang J. : Foundations of Analog and Digital Electronic Circuits. Morgan Kaufmann, 2005. ISBN 978-1558607354.
4. Kyncl J., Novotný M. : Číslicové a analogové obvody (2nd Edition). ČVUT v Praze, 2016. ISBN 978-80-01-05167-2.

Requirements:
High-school level of mathematics and physics.

The course is also part of the following Study plans:
Study Plan Study Branch/Specialization Role Recommended semester
BI-SPOL.21 Unspecified Branch/Specialisation of Study PP 1
BI-PI.21 Computer Engineering 2021 (in Czech) PP 1
BI-PG.21 Computer Graphics 2021 (in Czech) PP 1
BI-MI.21 Business Informatics 2021 (In Czech) PP 1
BI-IB.21 Information Security 2021 (in Czech) PP 1
BI-PS.21 Computer Networks and Internet 2021 (in Czech) PP 1
BI-PV.21 Computer Systems and Virtualization 2021 (in Czech) PP 1
BI-SI.21 Software Engineering 2021 (in Czech) PP 1
BI-TI.21 Computer Science 2021 (in Czech) PP 1
BI-UI.21 Artificial Intelligence 2021 (in Czech) PP 1
BI-WI.21 Web Engineering 2021 (in Czech) PP 1


Page updated 23. 4. 2024, semester: Z/2024-5, Z,L/2022-3, Z/2019-20, Z,L/2021-2, Z,L/2023-4, L/2019-20, Z,L/2020-1, Send comments to the content presented here to Administrator of study plans Design and implementation: J. Novák, I. Halaška