Main page | Study Branches/Specializations | Groups of Courses | All Courses | Roles                Instructions

A course is the basic teaching unit, it's design as a medium for a student to acquire comprehensive knowledge and skills indispensable in the given field. A course guarantor is responsible for the factual content of the course.
For each course, there is a department responsible for the course organisation. A person responsible for timetabling for a given department sets a time schedule of teaching and for each class, s/he assigns an instructor and/or an examiner.
Expected time consumption of the course is expressed by a course attribute extent of teaching. For example, extent = 2 +2 indicates two teaching hours of lectures and two teaching hours of seminar (lab) per week.
At the end of each semester, the course instructor has to evaluate the extent to which a student has acquired the expected knowledge and skills. The type of this evaluation is indicated by the attribute completion. So, a course can be completed by just an assessment ('pouze zápočet'), by a graded assessment ('klasifikovaný zápočet'), or by just an examination ('pouze zkouška') or by an assessment and examination ('zápočet a zkouška') .
The difficulty of a given course is evaluated by the amount of ECTS credits.
The course is in session (cf. teaching is going on) during a semester. Each course is offered either in the winter ('zimní') or summer ('letní') semester of an academic year. Exceptionally, a course might be offered in both semesters.
The subject matter of a course is described in various texts.

BIE-BEZ Security Extent of teaching: 2P+1R+1C
Instructor: Completion: Z,ZK
Department: 18106 Credits: 6 Semester: L

Annotation:
Students understand the mathematical fundamentals of cryptography and have an overview of current cryptographic algorithms and applications: symmetric and asymmetric cryptosystems, and hash functions. They also learn the fundamentals of secure programming and IT security, the fundamentals of designing and using modern cryptosystems for computer systems. They are able to properly and securely use cryptographic primitives and systems that are based on these primitives. Students are introduced to legal aspects of information security, security standards, social engineering, and basic principles of security management.

Lecture syllabus:
1. Fundamentals of modular arithmetic and number theory. Fundamental theorem of arithmetic.
2. Properties of prime numbers. Exponentiation in modular arithmetic, fundamental concepts in cryptography, substitution ciphers.
3. Block ciphers, transposition ciphers, exponential ciphers. Establishment of a shared key.
4. Information theory, algorithm complexity theory.
5. Hash functions, MD5, SHA-x, HMAC.
6. Chinese remainder theorem, primality tests.
7. Stream ciphers, RC4. Block ciphers, DES, 3DES, AES. Modes of operation of block ciphers.
8. [2] Asymmetric cryptography, RSA, RSA-CRT, digital signature, certificates.
9. Secret sharing.
10. Principles of secure programming.
11. IT security. Perimeter security, firewall, antivirus, antispam.
12. Social engineering. Legal aspects of information security, standards.

Seminar syllabus:
1. Fundamentals of modular arithmetic, substitution cipher, affine ciphers.
2. Transposition, Vigenere cipher, block ciphers, exponential ciphers. Diffie-Hellman algorithm.
3. Hash functions, stream ciphers.
4. Primality tests, block ciphers.
5. Certificates, asymmetric cryptography.
6. SSL encryption.

Literature:
1. Menezes, A. J., Oorschot, P. C., Vanstone, S. A. ''Handbook of Applied Cryptography''. CRC Press, 2001. ISBN 0849385237.
2. Rosen, K. H. ''Elementary Number Theory (5th Edition)''. Addison Wesley, 2004. ISBN 0321237072.

Requirements:
Fundamentals of linear algebra and discrete mathematics. Basics of number theory, elementary programming techniques. Knowledge of runtime and memory complexities.

Information about the course and courseware are available at https://courses.fit.cvut.cz/BI-BEZ/

The course is also part of the following Study plans:
Study Plan Study Branch/Specialization Role Recommended semester
BIE-TI.2015_ORIGINAL Computer Science (Bachelor, in English) PP 5
BIE-BIT.2015 Computer Security and Information technology (Bachelor, in English) PP 4
BIE-TI.2015 Computer Science (Bachelor, in English) PP 4
BIE-WSI-SI.2015 Software Engineering (Bachelor, in English) PP 4


Page updated 29. 3. 2024, semester: L/2021-2, Z,L/2023-4, Z/2021-2, Z/2020-1, Z/2019-20, L/2020-1, Z,L/2022-3, L/2019-20, Send comments to the content presented here to Administrator of study plans Design and implementation: J. Novák, I. Halaška